Best Time to Buy and Sell Stock III 买股票的最佳时间之三
题目描述
Say you have an array for which the $i^{th}$ element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two Transactions.
Note
You may not engage in multiple transactions at the same time(ie, you must sell the stock before you buy again).
分析
这道题是买股票的最佳时间系列问题中最难最复杂的一道,前面两道Best Time to Buy and Sell Stock II
和 Best Time to Buy and Sell Stock的思路都非常的简明,算法也很简单。
而这道题是要求最多交易两次,找到最大利润,还是需要用动态规划(Dynamic Programming)来解。
解法一
这里我们需要两个地推公式来分别更新两个变量local和global,我们其实可以求至少k
次交易的最大利润,找到通项公式后可以设定k = 2
,即为本题的解答。我们定义local[i][j]
为在到达第i
天时最多可进行j
次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]
为在到达第i
天时最多可进行j
次交易的最大利润,为此全局最优。他们的递推公式为:
|
|
其中局部最优值是比较前一天并少交易一次的全局最优加上大于0
的差值,和前一天的局部最优加上差值中取较大值,而全局最优值是比较局部最优和前一天的全局最优取较大值。
全局:
到达第i天进行j次交易的最大收益 = max{局部(在第i天交易后,恰好满足j次交易),全局(到达第i-1天时已经满足j次交易)}
局部:
在第i天交易后,总共交易了j次 = max{情况2,情况1}
情况1:在第i-1天时,恰好已经交易了j次(local[i-1][j]),那么如果i-1天到i天再交易一次:即在第i-1天买入,第i天卖出(diff),则这不并不会增加交易次数!【例如我在第一天买入,第二天卖出;然后第二天又买入,第三天再卖出的行为 和 第一天买入,第三天卖出 的效果是一样的,其实只进行了一次交易!因为有连续性】
情况2:第i-1天后,共交易了j-1次(global[i-1][j-1]),因此为了满足“第i天过后共进行了j次交易,且第i天必须进行交易”的条件:我们可以选择:在第i-1天买入,然后再第i天卖出(diff),或者选择在第i天买入,然后同样在第i天卖出(收益为0)。
代码如下:
C++
|
|
Swift
|
|
提升
|
|
解法二
也是用DP,设置四个变量,buy1、buy2、sell1、sell2
分别记录第一次购买,第二次购买和第一次卖出,第二次卖出。
因为题目要求只能在这个循序下(buy1 —> sell1 -> buy2 -> sell2)
完成交易。所以遍历一遍数组,每一次买入的时候尽可能花钱代价最小,每次卖出时尽可能高价卖出,代码如下。
C++
|
|
Swift
|
|
参考链接
http://blog.csdn.net/fightforyourdream/article/details/14503469